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Abstract. We present an accurate determination of the percolation transport exponent 
U = t / ( s  + 1 )  in three dimensions, based on a transfer-matrix approach to the AC (frequency- 
dependent) conductivity, and a finite-size scaling analysis of the numerical data. The phase 
of the complex conductivity, the loss angle, assumes the universal value 6, = (n/2)( 1 - U)  

at low frequency at the percolation threshold. As a test of our numerical scheme, the 
two-dimensional exact duality result ti,= n / 4  (i.e. s = t )  is recovered with a very good 
accuracy. In three dimensions, our data are extrapolated to tan 6,=0.54*0.03, i.e. U = 
0.69 f 0.02, whereas the usually accepted values s/ Y = 0.85 i0.04, t /  Y = 2.2 i O . 1  yield 
U = 0.72 f 0.02. This marginal disagreement can be attributed to ill behaved corrections to 
finite-size scaling. 

This letter presents a novel numerical determination of the percolation transport 
exponent U in three dimensions. This estimation is based on a finite-size scaling 
analysis of transfer-matrix data concerning the AC (frequency-dependent) complex 
conductivity of a metal-dielectric binary random mixture at the percolation threshold 
of the metallic component. We employ the usual bond-percolation modelisation on a 
cubic lattice [l, 21, where each bond is either a conductor (resistance R = 1) with 
probability p,  or an insulator (capacitance C = 1, i.e. impedance (iw)- '  at frequency 
w / 2 7 r )  with probability q 

The macroscopic AC conductivity Z( p ,  w )  of this system has a well known behaviour 
in two simple limiting cases. At zero frequency, the dielectric bonds are perfect 
insulators, and Z vanishes for p < p c ,  where p c  is the geometrical percolation (con- 
nectivity) threshold, and behaves as X - ( p  -pc ) '  for p + p : .  Conversely, in the limit 
of an infinite frequency, we have a normal-superconductor mixture, Z is infinite for 
q > p c ,  and behaves as X - ( p c -  q)-' for q + p i .  Both exponents s and t have been 
the subject of an intense theoretical activity. 

These two kinds of critical behaviour become 'rounded' as soon as w is not strictly 
zero, or infinite. In the following, we will focus our attention on the vicinity of the 
( p  = p c ,  w = 0) fixed point. In the whole critical region, where both ( p  - p J  and w are 
small, the AC conductivity has been shown to obey the following scaling behaviour 
[ 1-41: 

1 - p .  

W P ,  = IP-Pclf@*(ix) (1) 

x = wlp-pcl-S-'  (2) 

where 
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and where @* are two complex scaling functions, and * refers to the sign of ( p  - p c ) .  
The conductivity X ( p ,  U )  is a smooth function of p ,  even at p = p c ,  at fixed non-zero 
frequency w,  as well as a real-analytic function of io, at fixed p # pc. These regularity 
conditions imply that the large-x limit of both scaling functions is 

@+(ix) - @-(ix) - K(ix)" X+cO (3) 

U = t / ( s+ t ) .  (4) 

X ( p c ,  w )  = K exp(im/2)wU. ( 5 )  

where K is a real constant and the universal exponents s, t ,  U are related by 

The conductivity at p = p c ,  and at low frequency, is therefore 

In more physical words, the loss angle 6, usually defined through 

tan 6 = Re C/Im Z ( 6 )  

assumes the universal value 

f o r p = p , a n d w < < l .  
The remarkable consequence (7) of the scaling law (1) of the AC conductivity, 

which seems to have been noticed only recently [5-71, is the key observation which 
has motivated the present work; the critical exponent U can be directly measured 
through the finite quantity 6, at pc  but for w # 0, and hence off criticality, without 
extraction of a slope or any other fit except the extrapolation to the w + 0 limit, and 
of course subject to the finite size of the samples that transfer matrices can handle. 

The transfer-matrix method (TMM) for electrical problems in percolation has been 
introduced by Derrida and co-workers [8 ,9]  for the conductor-insulator problem 
(exponent t ) .  It consists in computing with a very high accuracy, through the recursive 
construction of an impedance matrix, the transverse conductivity of a strip of width 
N, or a bar of cross-sectional area N x N, for the two- and three-dimensional problems, 
respectively, and of length L >> N. An extrapolation of the conductivities E N  yields a 
determination of the exponent t, since a finite-size scaling [ 101 argument shows that 
E,( p c )  - N"". We will come back to this point in a more precise way later on, since 
finite-size scaling is also the cornerstone of the present work. The TMM has provided 
one of the most accurate determinations of the exponent t: t /  v = 0.973 0.005 [ 111, 
and t/ v = 2.2 * 0.1 [ 121, in two and three dimensions, respectively. 

The TMM was then extended by Herrmann et a1 [ 131 to the normal-superconductor 
problem (exponent s). In this case, the transfer matrix is used to compute the 
longitudinal conductivities of strips or bars. This geometry permits the use of periodic 
transverse boundary conditions which are known to minimise the systematic finite-size 
corrections. The main limitation of the TMM lies in the statistical errors: since EN are 
self-averaging, the error bars are proportional to L-'", L >> N being the system length, 
and hence can only be reduced by increasing L. The results of [ 131 s/ v = 0.977 * 0.01 
in two dimensions and s/v=0.85*0.04 in three dimensions are the most accurate 
estimates of the exponent s in the literature. 

In a previous publication [14], in collaboration with Clerc and Giraud, we have 
used the TMM to study various properties of the AC conductivity X ( p ,  w )  of the 
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two-dimensional metal-dielectric mixture mentioned above, with emphasis on a finite- 
size scaling analysis of the critical region around ( p  = p c ,  w =O). The very same 
extension of the TMM is used in the present work to compute the three-dimensional 
exponent U through (7); we therefore refer the reader to [14] for a description of the 
method. 

We restrict ourselves to the longitudinal conductivities of bars at the three- 
dimensional percolation threshold: pc = 0.2492 f 0.0002 [ 151. We have argued in [ 141 
that these quantities obey the following finite-size scaling behaviour, for w<< 1 and 
N >> 1: 

Z , ( p , ,  w )  = N-‘/”F(iX).  (8) 

(9) 

The real scaling variable 
X = w N ( S + . f ) / Y  

plays an analogous role to x, defined in (2): the distance ( p - p c l  to the threshold is 
replaced by the appropriate power of the system size. We are mainly concerned with 
the loss angles, defined through (61. Their scaling behaviour is 

S d p c ,  w )  =fW (10) 
and the scaling functionf goes to S,, defined in (7), as its argument X becomes large. 
The way in which this limit is reached follows from finite-size scaling theory [ 161; the 
corrections to the thermodynamical limit are exponentially small in N as soon as one 
of the relevant variables (here U )  is non-zero. We have therefore 

f (X)=  S,+O{exp(-AX”””+”)} X-CO (11) 
where A is some positive constant. 

where the duality of planar graphs yields the property 
We have first tested the scheme explained above on the two-dimensional case, 

8, = T/4  ( D = 2 ) .  (12) s = t  u = L  2 

Our data, obtained on strips on a square lattice, are shown in figure 1, which presents 
a plot of tan S against the inverse scaled frequency 1 /X  defined in (9),  for strip widths 
5 S N G 20. We have used the numerical value (s  + t)/ v = 1.95 [ 11,131. A clear data 
collapse can be seen: the systematic finite-size corrections to the scaling form (10) 
become smaller than the unavoidable statistical data scatter for widths N-5.  The 
extrapolated X + CO value cannot be distinguished from the exact result tan 6, = 1, 
implied by (12). The quality of the data does not allow for a reliable fit of the leading 
large-X behaviour with (11). The straight line on the figure is a least-squares fit, meant 
as a guide for the eye. 

We have performed the same analysis in the three-dimensional case (bars on a 
cubic lattice). Our data, corresponding to bar widths 4 4 N d 10, are shown in figure 
2. The systematic corrections to the scaling result (10) are more important than in the 
two-dimensional case. Fortunately, the X + CO limit seems to be rather insensitive to 
these corrections. The data collapse in a better way for smaller values of 1/X, and 
the limit tan 6, i= 0.54 appears clearly. Putting an error bar to this number is a more 
delicate task, since both statistical errors and corrections to (10) are involved. In order 
to observe an appreciable improvement in the data scatter, the amount of computer 
time we have used, 30 h of the array processor 3090 VF of CNUSC at Montpellier, 
would have to be increased roughly by a factor of ten! The rather small range of sizes 
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Figure 1. The tangent of the loss angles S , ( p , ,  U ) ,  of strips of width N at the two- 
dimensional percolation threshold pc = :, plotted against the reciprocal of the scaled 
frequency X defined in (9). The digits stand for strip widths N c 9; larger widths are 
denoted by symbols for N = 10 (O), 11 (a), 12 (*), 16 (0 )  and 20 (+). The X + m  limit 
of the scaling function agrees with the exact result tan 8, = 1. 

0.1 0.2 0.3 0.4 
1 I X  

Figure 2. Same as figure 1 for bars of section N x N at the three-dimensional threshold 
pc  = 0.2492. The X + 00 limit is estimated to be tan 8, = OS4* 0.03. 

we have explored makes any correction analysis difficult and hardly credible. We have 
therefore chosen to present only a least-squares linear fit, just as we did in the 
two-dimensional case, and to estimate the following error bar, in a global, and hence 
subjective, way: 

(13)  tan 6, = 0.54 f 0.03 U = 0.69 f 0.02. 
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The above-mentioned values of s and t [ 12, 131 yield tan 8, = 0.47 f 0.04; U = 0.72 f 0.02. 
We think that the marginal disagreement between both estimates can easily be explained 
by an effect of ill behaved corrections to finite-size scaling, either in the present work 
or in one of the quoted works, like, e.g., a slowly disappearing transient regime, which 
cannot be noticed except by going to much larger systems. 

It is a pleasure to thank J P Clerc, B Derrida, G Giraud, and H Herrmann for useful 
discussions. 
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